ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snprc GIF version

Theorem snprc 3435
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snprc 𝐴 ∈ V ↔ {𝐴} = ∅)

Proof of Theorem snprc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 velsn 3392 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21exbii 1496 . . 3 (∃𝑥 𝑥 ∈ {𝐴} ↔ ∃𝑥 𝑥 = 𝐴)
32notbii 594 . 2 (¬ ∃𝑥 𝑥 ∈ {𝐴} ↔ ¬ ∃𝑥 𝑥 = 𝐴)
4 eq0 3239 . . 3 ({𝐴} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝐴})
5 alnex 1388 . . 3 (∀𝑥 ¬ 𝑥 ∈ {𝐴} ↔ ¬ ∃𝑥 𝑥 ∈ {𝐴})
64, 5bitri 173 . 2 ({𝐴} = ∅ ↔ ¬ ∃𝑥 𝑥 ∈ {𝐴})
7 isset 2561 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
87notbii 594 . 2 𝐴 ∈ V ↔ ¬ ∃𝑥 𝑥 = 𝐴)
93, 6, 83bitr4ri 202 1 𝐴 ∈ V ↔ {𝐴} = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 98  wal 1241   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557  c0 3224  {csn 3375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-nul 3225  df-sn 3381
This theorem is referenced by:  prprc1  3478  prprc  3480  snexprc  3938  sucprc  4149  snnen2oprc  6323
  Copyright terms: Public domain W3C validator