Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralprg GIF version

Theorem ralprg 3421
 Description: Convert a quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ralprg.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
ralprg ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ralprg
StepHypRef Expression
1 df-pr 3382 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
21raleqi 2509 . . 3 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ∀𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑)
3 ralunb 3124 . . 3 (∀𝑥 ∈ ({𝐴} ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
42, 3bitri 173 . 2 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
5 ralprg.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
65ralsng 3411 . . 3 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
7 ralprg.2 . . . 4 (𝑥 = 𝐵 → (𝜑𝜒))
87ralsng 3411 . . 3 (𝐵𝑊 → (∀𝑥 ∈ {𝐵}𝜑𝜒))
96, 8bi2anan9 538 . 2 ((𝐴𝑉𝐵𝑊) → ((∀𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (𝜓𝜒)))
104, 9syl5bb 181 1 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   = wceq 1243   ∈ wcel 1393  ∀wral 2306   ∪ cun 2915  {csn 3375  {cpr 3376 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-sbc 2765  df-un 2922  df-sn 3381  df-pr 3382 This theorem is referenced by:  raltpg  3423  ralpr  3425  iinxprg  3731  fvinim0ffz  9096
 Copyright terms: Public domain W3C validator