![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > preleq | GIF version |
Description: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) |
Ref | Expression |
---|---|
preleq.1 | ⊢ 𝐴 ∈ V |
preleq.2 | ⊢ 𝐵 ∈ V |
preleq.3 | ⊢ 𝐶 ∈ V |
preleq.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
preleq | ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2lp 4278 | . . . . 5 ⊢ ¬ (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷) | |
2 | eleq12 2102 | . . . . . 6 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 ∈ 𝐵 ↔ 𝐷 ∈ 𝐶)) | |
3 | 2 | anbi1d 438 | . . . . 5 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ↔ (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷))) |
4 | 1, 3 | mtbiri 600 | . . . 4 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷)) |
5 | 4 | con2i 557 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → ¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) |
6 | 5 | adantr 261 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) |
7 | preleq.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
8 | preleq.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
9 | preleq.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
10 | preleq.4 | . . . . 5 ⊢ 𝐷 ∈ V | |
11 | 7, 8, 9, 10 | preq12b 3541 | . . . 4 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
12 | 11 | biimpi 113 | . . 3 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
13 | 12 | adantl 262 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
14 | 6, 13 | ecased 1239 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ∨ wo 629 = wceq 1243 ∈ wcel 1393 Vcvv 2557 {cpr 3376 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-setind 4262 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-dif 2920 df-un 2922 df-sn 3381 df-pr 3382 |
This theorem is referenced by: opthreg 4280 |
Copyright terms: Public domain | W3C validator |