| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfop | GIF version | ||
| Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
| Ref | Expression |
|---|---|
| nfop.1 | ⊢ Ⅎ𝑥𝐴 |
| nfop.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfop | ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-op 3384 | . 2 ⊢ 〈𝐴, 𝐵〉 = {𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})} | |
| 2 | nfop.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfel1 2188 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V |
| 4 | nfop.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfel1 2188 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V |
| 6 | 2 | nfsn 3430 | . . . . . 6 ⊢ Ⅎ𝑥{𝐴} |
| 7 | 2, 4 | nfpr 3420 | . . . . . 6 ⊢ Ⅎ𝑥{𝐴, 𝐵} |
| 8 | 6, 7 | nfpr 3420 | . . . . 5 ⊢ Ⅎ𝑥{{𝐴}, {𝐴, 𝐵}} |
| 9 | 8 | nfcri 2172 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}} |
| 10 | 3, 5, 9 | nf3an 1458 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}}) |
| 11 | 10 | nfab 2182 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑦 ∈ {{𝐴}, {𝐴, 𝐵}})} |
| 12 | 1, 11 | nfcxfr 2175 | 1 ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 |
| Colors of variables: wff set class |
| Syntax hints: ∧ w3a 885 ∈ wcel 1393 {cab 2026 Ⅎwnfc 2165 Vcvv 2557 {csn 3375 {cpr 3376 〈cop 3378 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
| This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-op 3384 |
| This theorem is referenced by: nfopd 3566 moop2 3988 fliftfuns 5438 dfmpt2 5844 qliftfuns 6190 caucvgprprlemaddq 6806 nfiseq 9218 |
| Copyright terms: Public domain | W3C validator |