![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inteqi | GIF version |
Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
inteqi | ⊢ ∩ 𝐴 = ∩ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | inteq 3618 | . 2 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ ∩ 𝐴 = ∩ 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∩ cint 3615 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-int 3616 |
This theorem is referenced by: elintrab 3627 ssintrab 3638 intmin2 3641 intsng 3649 intexrabim 3907 op1stb 4209 bm2.5ii 4222 dfiin3g 4590 op2ndb 4804 bj-dfom 10057 bj-omind 10058 |
Copyright terms: Public domain | W3C validator |