ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin2 GIF version

Theorem intmin2 3641
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
intmin2.1 𝐴 ∈ V
Assertion
Ref Expression
intmin2 {𝑥𝐴𝑥} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem intmin2
StepHypRef Expression
1 rabab 2575 . . 3 {𝑥 ∈ V ∣ 𝐴𝑥} = {𝑥𝐴𝑥}
21inteqi 3619 . 2 {𝑥 ∈ V ∣ 𝐴𝑥} = {𝑥𝐴𝑥}
3 intmin2.1 . . 3 𝐴 ∈ V
4 intmin 3635 . . 3 (𝐴 ∈ V → {𝑥 ∈ V ∣ 𝐴𝑥} = 𝐴)
53, 4ax-mp 7 . 2 {𝑥 ∈ V ∣ 𝐴𝑥} = 𝐴
62, 5eqtr3i 2062 1 {𝑥𝐴𝑥} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1243  wcel 1393  {cab 2026  {crab 2310  Vcvv 2557  wss 2917   cint 3615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rab 2315  df-v 2559  df-in 2924  df-ss 2931  df-int 3616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator