Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feq123d | GIF version |
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
feq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
feq123d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | feq12d 5036 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
4 | feq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | feq3 5032 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → (𝐺:𝐵⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
7 | 3, 6 | bitrd 177 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 = wceq 1243 ⟶wf 4898 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-fun 4904 df-fn 4905 df-f 4906 |
This theorem is referenced by: feq123 5038 feq23d 5042 |
Copyright terms: Public domain | W3C validator |