Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sucex GIF version

Theorem bj-sucex 9378
Description: sucex 4191 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-sucex.1 A V
Assertion
Ref Expression
bj-sucex suc A V

Proof of Theorem bj-sucex
StepHypRef Expression
1 bj-sucex.1 . 2 A V
2 bj-sucexg 9377 . 2 (A V → suc A V)
31, 2ax-mp 7 1 suc A V
Colors of variables: wff set class
Syntax hints:   wcel 1390  Vcvv 2551  suc csuc 4068
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-pr 3935  ax-un 4136  ax-bd0 9268  ax-bdor 9271  ax-bdex 9274  ax-bdeq 9275  ax-bdel 9276  ax-bdsb 9277  ax-bdsep 9339
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-v 2553  df-un 2916  df-sn 3373  df-pr 3374  df-uni 3572  df-suc 4074  df-bdc 9296
This theorem is referenced by:  bj-indint  9390  bj-bdfindis  9407  bj-inf2vnlem1  9430
  Copyright terms: Public domain W3C validator