Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sucexg | GIF version |
Description: sucexg 4224 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-sucexg | ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snexg 10032 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | |
2 | 1 | pm4.71i 371 | . . 3 ⊢ (𝐴 ∈ 𝑉 ↔ (𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V)) |
3 | 2 | biimpi 113 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V)) |
4 | bj-unexg 10041 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ V) → (𝐴 ∪ {𝐴}) ∈ V) | |
5 | df-suc 4108 | . . . 4 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
6 | 5 | eleq1i 2103 | . . 3 ⊢ (suc 𝐴 ∈ V ↔ (𝐴 ∪ {𝐴}) ∈ V) |
7 | 6 | biimpri 124 | . 2 ⊢ ((𝐴 ∪ {𝐴}) ∈ V → suc 𝐴 ∈ V) |
8 | 3, 4, 7 | 3syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∈ wcel 1393 Vcvv 2557 ∪ cun 2915 {csn 3375 suc csuc 4102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-pr 3944 ax-un 4170 ax-bd0 9933 ax-bdor 9936 ax-bdex 9939 ax-bdeq 9940 ax-bdel 9941 ax-bdsb 9942 ax-bdsep 10004 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-v 2559 df-un 2922 df-sn 3381 df-pr 3382 df-uni 3581 df-suc 4108 df-bdc 9961 |
This theorem is referenced by: bj-sucex 10043 |
Copyright terms: Public domain | W3C validator |