ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3impdi Structured version   GIF version

Theorem 3impdi 1171
Description: Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.)
Hypothesis
Ref Expression
3impdi.1 (((φ ψ) (φ χ)) → θ)
Assertion
Ref Expression
3impdi ((φ ψ χ) → θ)

Proof of Theorem 3impdi
StepHypRef Expression
1 3impdi.1 . . 3 (((φ ψ) (φ χ)) → θ)
21anandis 511 . 2 ((φ (ψ χ)) → θ)
323impb 1081 1 ((φ ψ χ) → θ)
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97   w3a 867
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110  df-3an 869
This theorem is referenced by:  ecovdi  6116  ecovidi  6117  distrpig  6179  mulcanenq  6230  mulcanenq0ec  6286  distrnq0  6300  axltadd  6689
  Copyright terms: Public domain W3C validator