Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulcanenq | GIF version |
Description: Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) |
Ref | Expression |
---|---|
mulcanenq | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 904 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 𝐴 ∈ N) | |
2 | simp2 905 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 𝐵 ∈ N) | |
3 | simp3 906 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 𝐶 ∈ N) | |
4 | mulcompig 6429 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)) | |
5 | 4 | adantl 262 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) ∧ (𝑥 ∈ N ∧ 𝑦 ∈ N)) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)) |
6 | mulasspig 6430 | . . . 4 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N ∧ 𝑧 ∈ N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))) | |
7 | 6 | adantl 262 | . . 3 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) ∧ (𝑥 ∈ N ∧ 𝑦 ∈ N ∧ 𝑧 ∈ N)) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))) |
8 | 1, 2, 3, 5, 7 | caov32d 5681 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵)) |
9 | mulclpi 6426 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) | |
10 | mulclpi 6426 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝐶 ∈ N) → (𝐴 ·N 𝐶) ∈ N) | |
11 | 9, 10 | anim12i 321 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐴 ∈ N ∧ 𝐶 ∈ N)) → ((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N)) |
12 | simpr 103 | . . . . . 6 ⊢ (((𝐴 ∈ N ∧ 𝐴 ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (𝐵 ∈ N ∧ 𝐶 ∈ N)) | |
13 | 12 | an4s 522 | . . . . 5 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐴 ∈ N ∧ 𝐶 ∈ N)) → (𝐵 ∈ N ∧ 𝐶 ∈ N)) |
14 | 11, 13 | jca 290 | . . . 4 ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐴 ∈ N ∧ 𝐶 ∈ N)) → (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N))) |
15 | 14 | 3impdi 1190 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N))) |
16 | enqbreq 6454 | . . 3 ⊢ ((((𝐴 ·N 𝐵) ∈ N ∧ (𝐴 ·N 𝐶) ∈ N) ∧ (𝐵 ∈ N ∧ 𝐶 ∈ N)) → (〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉 ↔ ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵))) | |
17 | 15, 16 | syl 14 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → (〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉 ↔ ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐶) ·N 𝐵))) |
18 | 8, 17 | mpbird 156 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∧ w3a 885 = wceq 1243 ∈ wcel 1393 〈cop 3378 class class class wbr 3764 (class class class)co 5512 Ncnpi 6370 ·N cmi 6372 ~Q ceq 6377 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-1st 5767 df-2nd 5768 df-recs 5920 df-irdg 5957 df-oadd 6005 df-omul 6006 df-ni 6402 df-mi 6404 df-enq 6445 |
This theorem is referenced by: mulcanenqec 6484 |
Copyright terms: Public domain | W3C validator |