ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr4a Structured version   GIF version

Theorem 3eqtr4a 2095
Description: A chained equality inference, useful for converting to definitions. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypotheses
Ref Expression
3eqtr4a.1 A = B
3eqtr4a.2 (φ𝐶 = A)
3eqtr4a.3 (φ𝐷 = B)
Assertion
Ref Expression
3eqtr4a (φ𝐶 = 𝐷)

Proof of Theorem 3eqtr4a
StepHypRef Expression
1 3eqtr4a.2 . . 3 (φ𝐶 = A)
2 3eqtr4a.1 . . 3 A = B
31, 2syl6eq 2085 . 2 (φ𝐶 = B)
4 3eqtr4a.3 . 2 (φ𝐷 = B)
53, 4eqtr4d 2072 1 (φ𝐶 = 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-4 1397  ax-17 1416  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-cleq 2030
This theorem is referenced by:  uniintsnr  3642  fndmdifcom  5216  offres  5704  1stval2  5724  2ndval2  5725  ecovcom  6149  ecovass  6151  ecovdi  6153  zeo  8119  xnegneg  8516  fzsuc2  8711  expnegap0  8917
  Copyright terms: Public domain W3C validator