ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissd Structured version   Unicode version

Theorem unissd 3595
Description: Subclass relationship for subclass union. Deduction form of uniss 3592. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unissd.1  C_
Assertion
Ref Expression
unissd  U.  C_  U.

Proof of Theorem unissd
StepHypRef Expression
1 unissd.1 . 2  C_
2 uniss 3592 . 2 
C_  U.  C_  U.
31, 2syl 14 1  U.  C_  U.
Colors of variables: wff set class
Syntax hints:   wi 4    C_ wss 2911   U.cuni 3571
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-in 2918  df-ss 2925  df-uni 3572
This theorem is referenced by:  iotanul  4825  tfrlemibfn  5883  tfrlemiubacc  5885
  Copyright terms: Public domain W3C validator