ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unidif0 Unicode version

Theorem unidif0 3920
Description: The removal of the empty set from a class does not affect its union. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif0  |-  U. ( A  \  { (/) } )  =  U. A

Proof of Theorem unidif0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3229 . . . . . . 7  |-  ( x  e.  y  ->  -.  y  =  (/) )
21pm4.71i 371 . . . . . 6  |-  ( x  e.  y  <->  ( x  e.  y  /\  -.  y  =  (/) ) )
32anbi1i 431 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  A )  <->  ( ( x  e.  y  /\  -.  y  =  (/) )  /\  y  e.  A ) )
4 an32 496 . . . . 5  |-  ( ( ( x  e.  y  /\  y  e.  A
)  /\  -.  y  =  (/) )  <->  ( (
x  e.  y  /\  -.  y  =  (/) )  /\  y  e.  A )
)
5 anass 381 . . . . 5  |-  ( ( ( x  e.  y  /\  y  e.  A
)  /\  -.  y  =  (/) )  <->  ( x  e.  y  /\  (
y  e.  A  /\  -.  y  =  (/) ) ) )
63, 4, 53bitr2ri 198 . . . 4  |-  ( ( x  e.  y  /\  ( y  e.  A  /\  -.  y  =  (/) ) )  <->  ( x  e.  y  /\  y  e.  A ) )
76exbii 1496 . . 3  |-  ( E. y ( x  e.  y  /\  ( y  e.  A  /\  -.  y  =  (/) ) )  <->  E. y ( x  e.  y  /\  y  e.  A ) )
8 eluni 3583 . . . 4  |-  ( x  e.  U. ( A 
\  { (/) } )  <->  E. y ( x  e.  y  /\  y  e.  ( A  \  { (/)
} ) ) )
9 eldif 2927 . . . . . . 7  |-  ( y  e.  ( A  \  { (/) } )  <->  ( y  e.  A  /\  -.  y  e.  { (/) } ) )
10 velsn 3392 . . . . . . . . 9  |-  ( y  e.  { (/) }  <->  y  =  (/) )
1110notbii 594 . . . . . . . 8  |-  ( -.  y  e.  { (/) }  <->  -.  y  =  (/) )
1211anbi2i 430 . . . . . . 7  |-  ( ( y  e.  A  /\  -.  y  e.  { (/) } )  <->  ( y  e.  A  /\  -.  y  =  (/) ) )
139, 12bitri 173 . . . . . 6  |-  ( y  e.  ( A  \  { (/) } )  <->  ( y  e.  A  /\  -.  y  =  (/) ) )
1413anbi2i 430 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  ( A  \  { (/) } ) )  <-> 
( x  e.  y  /\  ( y  e.  A  /\  -.  y  =  (/) ) ) )
1514exbii 1496 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e.  ( A  \  { (/)
} ) )  <->  E. y
( x  e.  y  /\  ( y  e.  A  /\  -.  y  =  (/) ) ) )
168, 15bitri 173 . . 3  |-  ( x  e.  U. ( A 
\  { (/) } )  <->  E. y ( x  e.  y  /\  ( y  e.  A  /\  -.  y  =  (/) ) ) )
17 eluni 3583 . . 3  |-  ( x  e.  U. A  <->  E. y
( x  e.  y  /\  y  e.  A
) )
187, 16, 173bitr4i 201 . 2  |-  ( x  e.  U. ( A 
\  { (/) } )  <-> 
x  e.  U. A
)
1918eqriv 2037 1  |-  U. ( A  \  { (/) } )  =  U. A
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 97    = wceq 1243   E.wex 1381    e. wcel 1393    \ cdif 2914   (/)c0 3224   {csn 3375   U.cuni 3580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-nul 3225  df-sn 3381  df-uni 3581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator