ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smoel Unicode version

Theorem smoel 5915
Description: If  x is less than  y then a strictly monotone function's value will be strictly less at  x than at  y. (Contributed by Andrew Salmon, 22-Nov-2011.)
Assertion
Ref Expression
smoel  |-  ( ( Smo  B  /\  A  e.  dom  B  /\  C  e.  A )  ->  ( B `  C )  e.  ( B `  A
) )

Proof of Theorem smoel
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smodm 5906 . . . . 5  |-  ( Smo 
B  ->  Ord  dom  B
)
2 ordtr1 4125 . . . . . . 7  |-  ( Ord 
dom  B  ->  ( ( C  e.  A  /\  A  e.  dom  B )  ->  C  e.  dom  B ) )
32ancomsd 256 . . . . . 6  |-  ( Ord 
dom  B  ->  ( ( A  e.  dom  B  /\  C  e.  A
)  ->  C  e.  dom  B ) )
43expdimp 246 . . . . 5  |-  ( ( Ord  dom  B  /\  A  e.  dom  B )  ->  ( C  e.  A  ->  C  e.  dom  B ) )
51, 4sylan 267 . . . 4  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  A  ->  C  e.  dom  B
) )
6 df-smo 5901 . . . . . 6  |-  ( Smo 
B  <->  ( B : dom  B --> On  /\  Ord  dom 
B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y
) ) ) )
7 eleq1 2100 . . . . . . . . . . 11  |-  ( x  =  C  ->  (
x  e.  y  <->  C  e.  y ) )
8 fveq2 5178 . . . . . . . . . . . 12  |-  ( x  =  C  ->  ( B `  x )  =  ( B `  C ) )
98eleq1d 2106 . . . . . . . . . . 11  |-  ( x  =  C  ->  (
( B `  x
)  e.  ( B `
 y )  <->  ( B `  C )  e.  ( B `  y ) ) )
107, 9imbi12d 223 . . . . . . . . . 10  |-  ( x  =  C  ->  (
( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) )  <->  ( C  e.  y  ->  ( B `  C )  e.  ( B `  y ) ) ) )
11 eleq2 2101 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( C  e.  y  <->  C  e.  A ) )
12 fveq2 5178 . . . . . . . . . . . 12  |-  ( y  =  A  ->  ( B `  y )  =  ( B `  A ) )
1312eleq2d 2107 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
( B `  C
)  e.  ( B `
 y )  <->  ( B `  C )  e.  ( B `  A ) ) )
1411, 13imbi12d 223 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( C  e.  y  ->  ( B `  C )  e.  ( B `  y ) )  <->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
1510, 14rspc2v 2662 . . . . . . . . 9  |-  ( ( C  e.  dom  B  /\  A  e.  dom  B )  ->  ( A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
1615ancoms 255 . . . . . . . 8  |-  ( ( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
1716com12 27 . . . . . . 7  |-  ( A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  -> 
( B `  x
)  e.  ( B `
 y ) )  ->  ( ( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
18173ad2ant3 927 . . . . . 6  |-  ( ( B : dom  B --> On  /\  Ord  dom  B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y ) ) )  ->  (
( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( C  e.  A  ->  ( B `
 C )  e.  ( B `  A
) ) ) )
196, 18sylbi 114 . . . . 5  |-  ( Smo 
B  ->  ( ( A  e.  dom  B  /\  C  e.  dom  B )  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
2019expdimp 246 . . . 4  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  dom  B  ->  ( C  e.  A  ->  ( B `  C )  e.  ( B `  A ) ) ) )
215, 20syld 40 . . 3  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  A  ->  ( C  e.  A  ->  ( B `  C
)  e.  ( B `
 A ) ) ) )
2221pm2.43d 44 . 2  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( C  e.  A  ->  ( B `  C
)  e.  ( B `
 A ) ) )
23223impia 1101 1  |-  ( ( Smo  B  /\  A  e.  dom  B  /\  C  e.  A )  ->  ( B `  C )  e.  ( B `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    = wceq 1243    e. wcel 1393   A.wral 2306   Ord word 4099   Oncon0 4100   dom cdm 4345   -->wf 4898   ` cfv 4902   Smo wsmo 5900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-tr 3855  df-iord 4103  df-iota 4867  df-fv 4910  df-smo 5901
This theorem is referenced by:  smoiun  5916  smoel2  5918
  Copyright terms: Public domain W3C validator