ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smofvon Unicode version

Theorem smofvon 5914
Description: If  B is a strictly monotone ordinal function, and  A is in the domain of  B, then the value of the function at 
A is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011.)
Assertion
Ref Expression
smofvon  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( B `  A
)  e.  On )

Proof of Theorem smofvon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-smo 5901 . . 3  |-  ( Smo 
B  <->  ( B : dom  B --> On  /\  Ord  dom 
B  /\  A. x  e.  dom  B A. y  e.  dom  B ( x  e.  y  ->  ( B `  x )  e.  ( B `  y
) ) ) )
21simp1bi 919 . 2  |-  ( Smo 
B  ->  B : dom  B --> On )
32ffvelrnda 5302 1  |-  ( ( Smo  B  /\  A  e.  dom  B )  -> 
( B `  A
)  e.  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    e. wcel 1393   A.wral 2306   Ord word 4099   Oncon0 4100   dom cdm 4345   -->wf 4898   ` cfv 4902   Smo wsmo 5900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910  df-smo 5901
This theorem is referenced by:  smoiun  5916
  Copyright terms: Public domain W3C validator