Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspc2v Unicode version

Theorem rspc2v 2662
 Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.)
Hypotheses
Ref Expression
rspc2v.1
rspc2v.2
Assertion
Ref Expression
rspc2v
Distinct variable groups:   ,,   ,   ,   ,,   ,   ,
Allowed substitution hints:   (,)   ()   ()   ()   ()

Proof of Theorem rspc2v
StepHypRef Expression
1 nfv 1421 . 2
2 nfv 1421 . 2
3 rspc2v.1 . 2
4 rspc2v.2 . 2
51, 2, 3, 4rspc2 2661 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98   wceq 1243   wcel 1393  wral 2306 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559 This theorem is referenced by:  rspc2va  2663  rspc3v  2665  wetriext  4301  f1veqaeq  5408  isorel  5448  fovcl  5606  caovclg  5653  caovcomg  5656  smoel  5915  cauappcvgprlem1  6757  caucvgprlemnkj  6764  caucvgprlemnbj  6765  caucvgprprlemval  6786  frecuzrdgrrn  9194  iseqcaopr3  9240  iseqhomo  9248  climcn2  9830
 Copyright terms: Public domain W3C validator