Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sblbis | Unicode version |
Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
sblbis.1 |
Ref | Expression |
---|---|
sblbis |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbbi 1833 | . 2 | |
2 | sblbis.1 | . . 3 | |
3 | 2 | bibi2i 216 | . 2 |
4 | 1, 3 | bitri 173 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 |
This theorem is referenced by: sb8eu 1913 sb8euh 1923 sb8iota 4874 |
Copyright terms: Public domain | W3C validator |