ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco4lem Unicode version

Theorem sbco4lem 1882
Description: Lemma for sbco4 1883. It replaces the temporary variable  v with another temporary variable  w. (Contributed by Jim Kingdon, 26-Sep-2018.)
Assertion
Ref Expression
sbco4lem  |-  ( [ x  /  v ] [ y  /  x ] [ v  /  y ] ph  <->  [ x  /  w ] [ y  /  x ] [ w  /  y ] ph )
Distinct variable groups:    w, v, ph    x, v, w    y, v, w
Allowed substitution hints:    ph( x, y)

Proof of Theorem sbco4lem
StepHypRef Expression
1 sbcom2 1863 . . 3  |-  ( [ w  /  v ] [ y  /  x ] [ v  /  w ] [ w  /  y ] ph  <->  [ y  /  x ] [ w  /  v ] [ v  /  w ] [ w  /  y ] ph )
21sbbii 1648 . 2  |-  ( [ x  /  w ] [ w  /  v ] [ y  /  x ] [ v  /  w ] [ w  /  y ] ph  <->  [ x  /  w ] [ y  /  x ] [ w  /  v ] [ v  /  w ] [ w  /  y ] ph )
3 nfv 1421 . . . . . . 7  |-  F/ w ph
43sbco2 1839 . . . . . 6  |-  ( [ v  /  w ] [ w  /  y ] ph  <->  [ v  /  y ] ph )
54sbbii 1648 . . . . 5  |-  ( [ y  /  x ] [ v  /  w ] [ w  /  y ] ph  <->  [ y  /  x ] [ v  /  y ] ph )
65sbbii 1648 . . . 4  |-  ( [ w  /  v ] [ y  /  x ] [ v  /  w ] [ w  /  y ] ph  <->  [ w  /  v ] [ y  /  x ] [ v  /  y ] ph )
76sbbii 1648 . . 3  |-  ( [ x  /  w ] [ w  /  v ] [ y  /  x ] [ v  /  w ] [ w  /  y ] ph  <->  [ x  /  w ] [ w  /  v ] [ y  /  x ] [ v  /  y ] ph )
8 nfv 1421 . . . 4  |-  F/ w [ y  /  x ] [ v  /  y ] ph
98sbco2 1839 . . 3  |-  ( [ x  /  w ] [ w  /  v ] [ y  /  x ] [ v  /  y ] ph  <->  [ x  /  v ] [ y  /  x ] [ v  /  y ] ph )
107, 9bitri 173 . 2  |-  ( [ x  /  w ] [ w  /  v ] [ y  /  x ] [ v  /  w ] [ w  /  y ] ph  <->  [ x  /  v ] [ y  /  x ] [ v  /  y ] ph )
11 nfv 1421 . . . . 5  |-  F/ v [ w  /  y ] ph
1211sbid2 1730 . . . 4  |-  ( [ w  /  v ] [ v  /  w ] [ w  /  y ] ph  <->  [ w  /  y ] ph )
1312sbbii 1648 . . 3  |-  ( [ y  /  x ] [ w  /  v ] [ v  /  w ] [ w  /  y ] ph  <->  [ y  /  x ] [ w  /  y ] ph )
1413sbbii 1648 . 2  |-  ( [ x  /  w ] [ y  /  x ] [ w  /  v ] [ v  /  w ] [ w  /  y ] ph  <->  [ x  /  w ] [ y  /  x ] [ w  /  y ] ph )
152, 10, 143bitr3i 199 1  |-  ( [ x  /  v ] [ y  /  x ] [ v  /  y ] ph  <->  [ x  /  w ] [ y  /  x ] [ w  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 98   [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by:  sbco4  1883
  Copyright terms: Public domain W3C validator