Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbco4lem | Unicode version |
Description: Lemma for sbco4 1883. It replaces the temporary variable with another temporary variable . (Contributed by Jim Kingdon, 26-Sep-2018.) |
Ref | Expression |
---|---|
sbco4lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcom2 1863 | . . 3 | |
2 | 1 | sbbii 1648 | . 2 |
3 | nfv 1421 | . . . . . . 7 | |
4 | 3 | sbco2 1839 | . . . . . 6 |
5 | 4 | sbbii 1648 | . . . . 5 |
6 | 5 | sbbii 1648 | . . . 4 |
7 | 6 | sbbii 1648 | . . 3 |
8 | nfv 1421 | . . . 4 | |
9 | 8 | sbco2 1839 | . . 3 |
10 | 7, 9 | bitri 173 | . 2 |
11 | nfv 1421 | . . . . 5 | |
12 | 11 | sbid2 1730 | . . . 4 |
13 | 12 | sbbii 1648 | . . 3 |
14 | 13 | sbbii 1648 | . 2 |
15 | 2, 10, 14 | 3bitr3i 199 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 |
This theorem is referenced by: sbco4 1883 |
Copyright terms: Public domain | W3C validator |