Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco4lem Unicode version

Theorem sbco4lem 1882
 Description: Lemma for sbco4 1883. It replaces the temporary variable with another temporary variable . (Contributed by Jim Kingdon, 26-Sep-2018.)
Assertion
Ref Expression
sbco4lem
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)

Proof of Theorem sbco4lem
StepHypRef Expression
1 sbcom2 1863 . . 3
21sbbii 1648 . 2
3 nfv 1421 . . . . . . 7
43sbco2 1839 . . . . . 6
54sbbii 1648 . . . . 5
65sbbii 1648 . . . 4
76sbbii 1648 . . 3
8 nfv 1421 . . . 4
98sbco2 1839 . . 3
107, 9bitri 173 . 2
11 nfv 1421 . . . . 5
1211sbid2 1730 . . . 4
1312sbbii 1648 . . 3
1413sbbii 1648 . 2
152, 10, 143bitr3i 199 1
 Colors of variables: wff set class Syntax hints:   wb 98  wsb 1645 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646 This theorem is referenced by:  sbco4  1883
 Copyright terms: Public domain W3C validator