ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8ab Unicode version

Theorem sb8ab 2159
Description: Substitution of variable in class abstraction. (Contributed by Jim Kingdon, 27-Sep-2018.)
Hypothesis
Ref Expression
sb8ab.1  |-  F/ y
ph
Assertion
Ref Expression
sb8ab  |-  { x  |  ph }  =  {
y  |  [ y  /  x ] ph }

Proof of Theorem sb8ab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sb8ab.1 . . . 4  |-  F/ y
ph
21sbco2 1839 . . 3  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] ph )
3 df-clab 2027 . . 3  |-  ( z  e.  { y  |  [ y  /  x ] ph }  <->  [ z  /  y ] [
y  /  x ] ph )
4 df-clab 2027 . . 3  |-  ( z  e.  { x  | 
ph }  <->  [ z  /  x ] ph )
52, 3, 43bitr4ri 202 . 2  |-  ( z  e.  { x  | 
ph }  <->  z  e.  { y  |  [ y  /  x ] ph } )
65eqriv 2037 1  |-  { x  |  ph }  =  {
y  |  [ y  /  x ] ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1243   F/wnf 1349    e. wcel 1393   [wsb 1645   {cab 2026
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator