ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8ab Structured version   Unicode version

Theorem sb8ab 2156
Description: Substitution of variable in class abstraction. (Contributed by Jim Kingdon, 27-Sep-2018.)
Hypothesis
Ref Expression
sb8ab.1  F/
Assertion
Ref Expression
sb8ab  {  |  }  {  |  }

Proof of Theorem sb8ab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sb8ab.1 . . . 4  F/
21sbco2 1836 . . 3
3 df-clab 2024 . . 3  {  |  }
4 df-clab 2024 . . 3  {  |  }
52, 3, 43bitr4ri 202 . 2  {  |  }  {  |  }
65eqriv 2034 1  {  |  }  {  |  }
Colors of variables: wff set class
Syntax hints:   wceq 1242   F/wnf 1346   wcel 1390  wsb 1642   {cab 2023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator