ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid2 Unicode version

Theorem abid2 2155
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 26-Dec-1993.)
Assertion
Ref Expression
abid2  {  |  }
Distinct variable group:   ,

Proof of Theorem abid2
StepHypRef Expression
1 biid 160 . . 3
21abbi2i 2149 . 2  {  |  }
32eqcomi 2041 1  {  |  }
Colors of variables: wff set class
Syntax hints:   wceq 1242   wcel 1390   {cab 2023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033
This theorem is referenced by:  csbid  2853  abss  3003  ssab  3004  abssi  3009  notab  3201  inrab2  3204  dfrab2  3206  dfrab3  3207  notrab  3208  eusn  3435  dfopg  3538  iunid  3703  csbexga  3876  imai  4624  dffv4g  5118  frec0g  5922  euen1b  6219
  Copyright terms: Public domain W3C validator