Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4b Structured version   Unicode version

Theorem rexcom4b 2573
 Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
Hypothesis
Ref Expression
rexcom4b.1
Assertion
Ref Expression
rexcom4b
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem rexcom4b
StepHypRef Expression
1 rexcom4a 2572 . 2
2 rexcom4b.1 . . . . 5
32isseti 2557 . . . 4
43biantru 286 . . 3
54rexbii 2325 . 2
61, 5bitr4i 176 1
 Colors of variables: wff set class Syntax hints:   wa 97   wb 98   wceq 1242  wex 1378   wcel 1390  wrex 2301  cvv 2551 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-v 2553 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator