ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4a Structured version   Unicode version

Theorem rexcom4a 2572
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
Assertion
Ref Expression
rexcom4a
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   (,)   ()

Proof of Theorem rexcom4a
StepHypRef Expression
1 rexcom4 2571 . 2
2 19.42v 1783 . . 3
32rexbii 2325 . 2
41, 3bitr3i 175 1
Colors of variables: wff set class
Syntax hints:   wa 97   wb 98  wex 1378  wrex 2301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-v 2553
This theorem is referenced by:  rexcom4b  2573
  Copyright terms: Public domain W3C validator