Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reldm | Unicode version |
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
reldm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm2 5811 | . . 3 | |
2 | vex 2560 | . . . . . . 7 | |
3 | 1stexg 5794 | . . . . . . 7 | |
4 | 2, 3 | ax-mp 7 | . . . . . 6 |
5 | eqid 2040 | . . . . . 6 | |
6 | 4, 5 | fnmpti 5027 | . . . . 5 |
7 | fvelrnb 5221 | . . . . 5 | |
8 | 6, 7 | ax-mp 7 | . . . 4 |
9 | fveq2 5178 | . . . . . . . 8 | |
10 | vex 2560 | . . . . . . . . 9 | |
11 | 1stexg 5794 | . . . . . . . . 9 | |
12 | 10, 11 | ax-mp 7 | . . . . . . . 8 |
13 | 9, 5, 12 | fvmpt 5249 | . . . . . . 7 |
14 | 13 | eqeq1d 2048 | . . . . . 6 |
15 | 14 | rexbiia 2339 | . . . . 5 |
16 | 15 | a1i 9 | . . . 4 |
17 | 8, 16 | syl5rbb 182 | . . 3 |
18 | 1, 17 | bitrd 177 | . 2 |
19 | 18 | eqrdv 2038 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wceq 1243 wcel 1393 wrex 2307 cvv 2557 cmpt 3818 cdm 4345 crn 4346 wrel 4350 wfn 4897 cfv 4902 c1st 5765 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-sbc 2765 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-fo 4908 df-fv 4910 df-1st 5767 df-2nd 5768 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |