ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldm Unicode version

Theorem reldm 5812
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
reldm  |-  ( Rel 
A  ->  dom  A  =  ran  ( x  e.  A  |->  ( 1st `  x
) ) )
Distinct variable group:    x, A

Proof of Theorem reldm
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 releldm2 5811 . . 3  |-  ( Rel 
A  ->  ( y  e.  dom  A  <->  E. z  e.  A  ( 1st `  z )  =  y ) )
2 vex 2560 . . . . . . 7  |-  x  e. 
_V
3 1stexg 5794 . . . . . . 7  |-  ( x  e.  _V  ->  ( 1st `  x )  e. 
_V )
42, 3ax-mp 7 . . . . . 6  |-  ( 1st `  x )  e.  _V
5 eqid 2040 . . . . . 6  |-  ( x  e.  A  |->  ( 1st `  x ) )  =  ( x  e.  A  |->  ( 1st `  x
) )
64, 5fnmpti 5027 . . . . 5  |-  ( x  e.  A  |->  ( 1st `  x ) )  Fn  A
7 fvelrnb 5221 . . . . 5  |-  ( ( x  e.  A  |->  ( 1st `  x ) )  Fn  A  -> 
( y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) )  <->  E. z  e.  A  ( (
x  e.  A  |->  ( 1st `  x ) ) `  z )  =  y ) )
86, 7ax-mp 7 . . . 4  |-  ( y  e.  ran  ( x  e.  A  |->  ( 1st `  x ) )  <->  E. z  e.  A  ( (
x  e.  A  |->  ( 1st `  x ) ) `  z )  =  y )
9 fveq2 5178 . . . . . . . 8  |-  ( x  =  z  ->  ( 1st `  x )  =  ( 1st `  z
) )
10 vex 2560 . . . . . . . . 9  |-  z  e. 
_V
11 1stexg 5794 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
1210, 11ax-mp 7 . . . . . . . 8  |-  ( 1st `  z )  e.  _V
139, 5, 12fvmpt 5249 . . . . . . 7  |-  ( z  e.  A  ->  (
( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  ( 1st `  z ) )
1413eqeq1d 2048 . . . . . 6  |-  ( z  e.  A  ->  (
( ( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  ( 1st `  z )  =  y ) )
1514rexbiia 2339 . . . . 5  |-  ( E. z  e.  A  ( ( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  E. z  e.  A  ( 1st `  z )  =  y )
1615a1i 9 . . . 4  |-  ( Rel 
A  ->  ( E. z  e.  A  (
( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  E. z  e.  A  ( 1st `  z )  =  y ) )
178, 16syl5rbb 182 . . 3  |-  ( Rel 
A  ->  ( E. z  e.  A  ( 1st `  z )  =  y  <->  y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) ) ) )
181, 17bitrd 177 . 2  |-  ( Rel 
A  ->  ( y  e.  dom  A  <->  y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) ) ) )
1918eqrdv 2038 1  |-  ( Rel 
A  ->  dom  A  =  ran  ( x  e.  A  |->  ( 1st `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243    e. wcel 1393   E.wrex 2307   _Vcvv 2557    |-> cmpt 3818   dom cdm 4345   ran crn 4346   Rel wrel 4350    Fn wfn 4897   ` cfv 4902   1stc1st 5765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fo 4908  df-fv 4910  df-1st 5767  df-2nd 5768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator