ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsid Unicode version

Theorem qsid 6171
Description: A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
qsid  |-  ( A /. `'  _E  )  =  A

Proof of Theorem qsid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2560 . . . . . . 7  |-  x  e. 
_V
21ecid 6169 . . . . . 6  |-  [ x ] `'  _E  =  x
32eqeq2i 2050 . . . . 5  |-  ( y  =  [ x ] `'  _E  <->  y  =  x )
4 equcom 1593 . . . . 5  |-  ( y  =  x  <->  x  =  y )
53, 4bitri 173 . . . 4  |-  ( y  =  [ x ] `'  _E  <->  x  =  y
)
65rexbii 2331 . . 3  |-  ( E. x  e.  A  y  =  [ x ] `'  _E  <->  E. x  e.  A  x  =  y )
7 vex 2560 . . . 4  |-  y  e. 
_V
87elqs 6157 . . 3  |-  ( y  e.  ( A /. `'  _E  )  <->  E. x  e.  A  y  =  [ x ] `'  _E  )
9 risset 2352 . . 3  |-  ( y  e.  A  <->  E. x  e.  A  x  =  y )
106, 8, 93bitr4i 201 . 2  |-  ( y  e.  ( A /. `'  _E  )  <->  y  e.  A )
1110eqriv 2037 1  |-  ( A /. `'  _E  )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1243    e. wcel 1393   E.wrex 2307    _E cep 4024   `'ccnv 4344   [cec 6104   /.cqs 6105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-eprel 4026  df-xp 4351  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-ec 6108  df-qs 6112
This theorem is referenced by:  dfcnqs  6917
  Copyright terms: Public domain W3C validator