ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsid Structured version   Unicode version

Theorem qsid 6107
Description: A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
qsid 
/. `'  _E

Proof of Theorem qsid
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2554 . . . . . . 7 
_V
21ecid 6105 . . . . . 6  `'  _E
32eqeq2i 2047 . . . . 5  `'  _E
4 equcom 1590 . . . . 5
53, 4bitri 173 . . . 4  `'  _E
65rexbii 2325 . . 3  `'  _E
7 vex 2554 . . . 4 
_V
87elqs 6093 . . 3  /. `'  _E  `'  _E
9 risset 2346 . . 3
106, 8, 93bitr4i 201 . 2  /. `'  _E
1110eqriv 2034 1 
/. `'  _E
Colors of variables: wff set class
Syntax hints:   wceq 1242   wcel 1390  wrex 2301    _E cep 4015   `'ccnv 4287  cec 6040   /.cqs 6041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-eprel 4017  df-xp 4294  df-cnv 4296  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-ec 6044  df-qs 6048
This theorem is referenced by:  dfcnqs  6738
  Copyright terms: Public domain W3C validator