ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ectocld Unicode version

Theorem ectocld 6172
Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ectocl.1  |-  S  =  ( B /. R
)
ectocl.2  |-  ( [ x ] R  =  A  ->  ( ph  <->  ps ) )
ectocld.3  |-  ( ( ch  /\  x  e.  B )  ->  ph )
Assertion
Ref Expression
ectocld  |-  ( ( ch  /\  A  e.  S )  ->  ps )
Distinct variable groups:    x, A    x, B    x, R    ps, x    ch, x
Allowed substitution hints:    ph( x)    S( x)

Proof of Theorem ectocld
StepHypRef Expression
1 elqsi 6158 . . . 4  |-  ( A  e.  ( B /. R )  ->  E. x  e.  B  A  =  [ x ] R
)
2 ectocl.1 . . . 4  |-  S  =  ( B /. R
)
31, 2eleq2s 2132 . . 3  |-  ( A  e.  S  ->  E. x  e.  B  A  =  [ x ] R
)
4 ectocld.3 . . . . 5  |-  ( ( ch  /\  x  e.  B )  ->  ph )
5 ectocl.2 . . . . . 6  |-  ( [ x ] R  =  A  ->  ( ph  <->  ps ) )
65eqcoms 2043 . . . . 5  |-  ( A  =  [ x ] R  ->  ( ph  <->  ps )
)
74, 6syl5ibcom 144 . . . 4  |-  ( ( ch  /\  x  e.  B )  ->  ( A  =  [ x ] R  ->  ps )
)
87rexlimdva 2433 . . 3  |-  ( ch 
->  ( E. x  e.  B  A  =  [
x ] R  ->  ps ) )
93, 8syl5 28 . 2  |-  ( ch 
->  ( A  e.  S  ->  ps ) )
109imp 115 1  |-  ( ( ch  /\  A  e.  S )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   E.wrex 2307   [cec 6104   /.cqs 6105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-qs 6112
This theorem is referenced by:  ectocl  6173  elqsn0m  6174  qsel  6183
  Copyright terms: Public domain W3C validator