![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > equcom | Unicode version |
Description: Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
Ref | Expression |
---|---|
equcom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcomi 1592 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | equcomi 1592 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbii 117 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-gen 1338 ax-ie2 1383 ax-8 1395 ax-17 1419 ax-i9 1423 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: sbal1yz 1877 dveeq1 1895 eu1 1925 reu7 2736 reu8 2737 iunid 3712 copsexg 3981 opelopabsbALT 3996 opeliunxp 4395 relop 4486 dmi 4550 opabresid 4659 intirr 4711 cnvi 4728 coi1 4836 brprcneu 5171 f1oiso 5465 qsid 6171 |
Copyright terms: Public domain | W3C validator |