ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwssb Unicode version

Theorem pwssb 3740
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
pwssb  |-  ( A 
C_  ~P B  <->  A. x  e.  A  x  C_  B
)
Distinct variable groups:    x, A    x, B

Proof of Theorem pwssb
StepHypRef Expression
1 sspwuni 3739 . 2  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
2 unissb 3610 . 2  |-  ( U. A  C_  B  <->  A. x  e.  A  x  C_  B
)
31, 2bitri 173 1  |-  ( A 
C_  ~P B  <->  A. x  e.  A  x  C_  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 98   A.wral 2306    C_ wss 2917   ~Pcpw 3359   U.cuni 3580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-in 2924  df-ss 2931  df-pw 3361  df-uni 3581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator