ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwuni Unicode version

Theorem elpwuni 3741
Description: Relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
elpwuni  |-  ( B  e.  A  ->  ( A  C_  ~P B  <->  U. A  =  B ) )

Proof of Theorem elpwuni
StepHypRef Expression
1 sspwuni 3739 . 2  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
2 unissel 3609 . . . 4  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  U. A  =  B )
32expcom 109 . . 3  |-  ( B  e.  A  ->  ( U. A  C_  B  ->  U. A  =  B
) )
4 eqimss 2997 . . 3  |-  ( U. A  =  B  ->  U. A  C_  B )
53, 4impbid1 130 . 2  |-  ( B  e.  A  ->  ( U. A  C_  B  <->  U. A  =  B ) )
61, 5syl5bb 181 1  |-  ( B  e.  A  ->  ( A  C_  ~P B  <->  U. A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243    e. wcel 1393    C_ wss 2917   ~Pcpw 3359   U.cuni 3580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-in 2924  df-ss 2931  df-pw 3361  df-uni 3581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator