ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpw0ss Unicode version

Theorem pwpw0ss 3575
Description: Compute the power set of the power set of the empty set. (See pw0 3511 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48 (but with subset in place of equality). (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
pwpw0ss  |-  { (/) ,  { (/) } }  C_  ~P { (/) }

Proof of Theorem pwpw0ss
StepHypRef Expression
1 pwsnss 3574 1  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
Colors of variables: wff set class
Syntax hints:    C_ wss 2917   (/)c0 3224   ~Pcpw 3359   {csn 3375   {cpr 3376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382
This theorem is referenced by:  pp0ex  3940
  Copyright terms: Public domain W3C validator