ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr1g Unicode version

Theorem preqr1g 3537
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 3539. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
preqr1g  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { A ,  C }  =  { B ,  C }  ->  A  =  B ) )

Proof of Theorem preqr1g
StepHypRef Expression
1 prid1g 3474 . . . . . . 7  |-  ( A  e.  _V  ->  A  e.  { A ,  C } )
2 eleq2 2101 . . . . . . 7  |-  ( { A ,  C }  =  { B ,  C }  ->  ( A  e. 
{ A ,  C } 
<->  A  e.  { B ,  C } ) )
31, 2syl5ibcom 144 . . . . . 6  |-  ( A  e.  _V  ->  ( { A ,  C }  =  { B ,  C }  ->  A  e.  { B ,  C }
) )
4 elprg 3395 . . . . . 6  |-  ( A  e.  _V  ->  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) ) )
53, 4sylibd 138 . . . . 5  |-  ( A  e.  _V  ->  ( { A ,  C }  =  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) ) )
65adantr 261 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { A ,  C }  =  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) ) )
76imp 115 . . 3  |-  ( ( ( A  e.  _V  /\  B  e.  _V )  /\  { A ,  C }  =  { B ,  C } )  -> 
( A  =  B  \/  A  =  C ) )
8 prid1g 3474 . . . . . . 7  |-  ( B  e.  _V  ->  B  e.  { B ,  C } )
9 eleq2 2101 . . . . . . 7  |-  ( { A ,  C }  =  { B ,  C }  ->  ( B  e. 
{ A ,  C } 
<->  B  e.  { B ,  C } ) )
108, 9syl5ibrcom 146 . . . . . 6  |-  ( B  e.  _V  ->  ( { A ,  C }  =  { B ,  C }  ->  B  e.  { A ,  C }
) )
11 elprg 3395 . . . . . 6  |-  ( B  e.  _V  ->  ( B  e.  { A ,  C }  <->  ( B  =  A  \/  B  =  C ) ) )
1210, 11sylibd 138 . . . . 5  |-  ( B  e.  _V  ->  ( { A ,  C }  =  { B ,  C }  ->  ( B  =  A  \/  B  =  C ) ) )
1312adantl 262 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { A ,  C }  =  { B ,  C }  ->  ( B  =  A  \/  B  =  C ) ) )
1413imp 115 . . 3  |-  ( ( ( A  e.  _V  /\  B  e.  _V )  /\  { A ,  C }  =  { B ,  C } )  -> 
( B  =  A  \/  B  =  C ) )
15 eqcom 2042 . . 3  |-  ( A  =  B  <->  B  =  A )
16 eqeq2 2049 . . 3  |-  ( A  =  C  ->  ( B  =  A  <->  B  =  C ) )
177, 14, 15, 16oplem1 882 . 2  |-  ( ( ( A  e.  _V  /\  B  e.  _V )  /\  { A ,  C }  =  { B ,  C } )  ->  A  =  B )
1817ex 108 1  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { A ,  C }  =  { B ,  C }  ->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    \/ wo 629    = wceq 1243    e. wcel 1393   _Vcvv 2557   {cpr 3376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382
This theorem is referenced by:  preqr2g  3538
  Copyright terms: Public domain W3C validator