ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr1 Structured version   Unicode version

Theorem preqr1 3530
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.)
Hypotheses
Ref Expression
preqr1.1  _V
preqr1.2  _V
Assertion
Ref Expression
preqr1  { ,  C }  { ,  C }

Proof of Theorem preqr1
StepHypRef Expression
1 preqr1.1 . . . . 5  _V
21prid1 3467 . . . 4  { ,  C }
3 eleq2 2098 . . . 4  { ,  C }  { ,  C }  { ,  C }  { ,  C }
42, 3mpbii 136 . . 3  { ,  C }  { ,  C }  { ,  C }
51elpr 3385 . . 3  { ,  C }  C
64, 5sylib 127 . 2  { ,  C }  { ,  C }  C
7 preqr1.2 . . . . 5  _V
87prid1 3467 . . . 4  { ,  C }
9 eleq2 2098 . . . 4  { ,  C }  { ,  C }  { ,  C }  { ,  C }
108, 9mpbiri 157 . . 3  { ,  C }  { ,  C }  { ,  C }
117elpr 3385 . . 3  { ,  C }  C
1210, 11sylib 127 . 2  { ,  C }  { ,  C }  C
13 eqcom 2039 . 2
14 eqeq2 2046 . 2  C  C
156, 12, 13, 14oplem1 881 1  { ,  C }  { ,  C }
Colors of variables: wff set class
Syntax hints:   wi 4   wo 628   wceq 1242   wcel 1390   _Vcvv 2551   {cpr 3368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-sn 3373  df-pr 3374
This theorem is referenced by:  preqr2  3531
  Copyright terms: Public domain W3C validator