ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvmptt Unicode version

Theorem fvmptt 5262
Description: Closed theorem form of fvmpt 5249. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
fvmptt  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  ( F `  A )  =  C )
Distinct variable groups:    x, A    x, C    x, D
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem fvmptt
StepHypRef Expression
1 simp2 905 . . 3  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  F  =  ( x  e.  D  |->  B ) )
21fveq1d 5180 . 2  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  ( F `  A )  =  ( ( x  e.  D  |->  B ) `
 A ) )
3 risset 2352 . . . . 5  |-  ( A  e.  D  <->  E. x  e.  D  x  =  A )
4 elex 2566 . . . . . 6  |-  ( C  e.  V  ->  C  e.  _V )
5 nfa1 1434 . . . . . . 7  |-  F/ x A. x ( x  =  A  ->  B  =  C )
6 nfv 1421 . . . . . . . 8  |-  F/ x  C  e.  _V
7 nffvmpt1 5186 . . . . . . . . 9  |-  F/_ x
( ( x  e.  D  |->  B ) `  A )
87nfeq1 2187 . . . . . . . 8  |-  F/ x
( ( x  e.  D  |->  B ) `  A )  =  C
96, 8nfim 1464 . . . . . . 7  |-  F/ x
( C  e.  _V  ->  ( ( x  e.  D  |->  B ) `  A )  =  C )
10 simprl 483 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  x  e.  D )
11 simplr 482 . . . . . . . . . . . . . 14  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  B  =  C )
12 simprr 484 . . . . . . . . . . . . . 14  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  C  e.  _V )
1311, 12eqeltrd 2114 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  B  e.  _V )
14 eqid 2040 . . . . . . . . . . . . . 14  |-  ( x  e.  D  |->  B )  =  ( x  e.  D  |->  B )
1514fvmpt2 5254 . . . . . . . . . . . . 13  |-  ( ( x  e.  D  /\  B  e.  _V )  ->  ( ( x  e.  D  |->  B ) `  x )  =  B )
1610, 13, 15syl2anc 391 . . . . . . . . . . . 12  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  -> 
( ( x  e.  D  |->  B ) `  x )  =  B )
17 simpll 481 . . . . . . . . . . . . 13  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  ->  x  =  A )
1817fveq2d 5182 . . . . . . . . . . . 12  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  -> 
( ( x  e.  D  |->  B ) `  x )  =  ( ( x  e.  D  |->  B ) `  A
) )
1916, 18, 113eqtr3d 2080 . . . . . . . . . . 11  |-  ( ( ( x  =  A  /\  B  =  C )  /\  ( x  e.  D  /\  C  e.  _V ) )  -> 
( ( x  e.  D  |->  B ) `  A )  =  C )
2019exp43 354 . . . . . . . . . 10  |-  ( x  =  A  ->  ( B  =  C  ->  ( x  e.  D  -> 
( C  e.  _V  ->  ( ( x  e.  D  |->  B ) `  A )  =  C ) ) ) )
2120a2i 11 . . . . . . . . 9  |-  ( ( x  =  A  ->  B  =  C )  ->  ( x  =  A  ->  ( x  e.  D  ->  ( C  e.  _V  ->  ( (
x  e.  D  |->  B ) `  A )  =  C ) ) ) )
2221com23 72 . . . . . . . 8  |-  ( ( x  =  A  ->  B  =  C )  ->  ( x  e.  D  ->  ( x  =  A  ->  ( C  e. 
_V  ->  ( ( x  e.  D  |->  B ) `
 A )  =  C ) ) ) )
2322sps 1430 . . . . . . 7  |-  ( A. x ( x  =  A  ->  B  =  C )  ->  (
x  e.  D  -> 
( x  =  A  ->  ( C  e. 
_V  ->  ( ( x  e.  D  |->  B ) `
 A )  =  C ) ) ) )
245, 9, 23rexlimd 2430 . . . . . 6  |-  ( A. x ( x  =  A  ->  B  =  C )  ->  ( E. x  e.  D  x  =  A  ->  ( C  e.  _V  ->  ( ( x  e.  D  |->  B ) `  A
)  =  C ) ) )
254, 24syl7 63 . . . . 5  |-  ( A. x ( x  =  A  ->  B  =  C )  ->  ( E. x  e.  D  x  =  A  ->  ( C  e.  V  -> 
( ( x  e.  D  |->  B ) `  A )  =  C ) ) )
263, 25syl5bi 141 . . . 4  |-  ( A. x ( x  =  A  ->  B  =  C )  ->  ( A  e.  D  ->  ( C  e.  V  -> 
( ( x  e.  D  |->  B ) `  A )  =  C ) ) )
2726imp32 244 . . 3  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  ( A  e.  D  /\  C  e.  V )
)  ->  ( (
x  e.  D  |->  B ) `  A )  =  C )
28273adant2 923 . 2  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  (
( x  e.  D  |->  B ) `  A
)  =  C )
292, 28eqtrd 2072 1  |-  ( ( A. x ( x  =  A  ->  B  =  C )  /\  F  =  ( x  e.  D  |->  B )  /\  ( A  e.  D  /\  C  e.  V
) )  ->  ( F `  A )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885   A.wal 1241    = wceq 1243    e. wcel 1393   E.wrex 2307   _Vcvv 2557    |-> cmpt 3818   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator