ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exnalim Structured version   Unicode version

Theorem exnalim 1534
Description: One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
Assertion
Ref Expression
exnalim

Proof of Theorem exnalim
StepHypRef Expression
1 alexim 1533 . 2
21con2i 557 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4  wal 1240  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-fal 1248  df-nf 1347
This theorem is referenced by:  exanaliim  1535  alexnim  1536  dtru  4238  brprcneu  5114
  Copyright terms: Public domain W3C validator