ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alexnim Structured version   Unicode version

Theorem alexnim 1521
Description: A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
alexnim

Proof of Theorem alexnim
StepHypRef Expression
1 exnalim 1519 . . 3
21alimi 1324 . 2
3 alnex 1369 . 2
42, 3sylib 127 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4  wal 1226  wex 1362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-4 1381  ax-17 1400  ax-ial 1409
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-fal 1234  df-nf 1330
This theorem is referenced by:  nalset  3861  bj-nalset  7118
  Copyright terms: Public domain W3C validator