ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exanaliim Structured version   Unicode version

Theorem exanaliim 1535
Description: A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
Assertion
Ref Expression
exanaliim

Proof of Theorem exanaliim
StepHypRef Expression
1 annimim 781 . . 3
21eximi 1488 . 2
3 exnalim 1534 . 2
42, 3syl 14 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97  wal 1240  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-fal 1248  df-nf 1347
This theorem is referenced by:  rexnalim  2311  nssr  2997  nssssr  3949  brprcneu  5114
  Copyright terms: Public domain W3C validator