ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exanaliim Structured version   Unicode version

Theorem exanaliim 1520
Description: A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
Assertion
Ref Expression
exanaliim

Proof of Theorem exanaliim
StepHypRef Expression
1 annimim 775 . . 3
21eximi 1473 . 2
3 exnalim 1519 . 2
42, 3syl 14 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97  wal 1226  wex 1362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-4 1381  ax-17 1400  ax-ial 1409
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-fal 1234  df-nf 1330
This theorem is referenced by:  rexnalim  2295  nssr  2980  nssssr  3932  brprcneu  5096
  Copyright terms: Public domain W3C validator