Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eupickbi Unicode version

Theorem eupickbi 1982
 Description: Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
eupickbi

Proof of Theorem eupickbi
StepHypRef Expression
1 eupicka 1980 . . 3
21ex 108 . 2
3 hba1 1433 . . . . 5
4 ancl 301 . . . . . . 7
5 simpl 102 . . . . . . 7
64, 5impbid1 130 . . . . . 6
76sps 1430 . . . . 5
83, 7eubidh 1906 . . . 4
9 euex 1930 . . . 4
108, 9syl6bi 152 . . 3
1110com12 27 . 2
122, 11impbid 120 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98  wal 1241  wex 1381  weu 1900 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator