ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqle Unicode version

Theorem eqle 7109
Description: Equality implies 'less than or equal to'. (Contributed by NM, 4-Apr-2005.)
Assertion
Ref Expression
eqle  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )

Proof of Theorem eqle
StepHypRef Expression
1 leid 7102 . 2  |-  ( A  e.  RR  ->  A  <_  A )
2 breq2 3768 . . 3  |-  ( A  =  B  ->  ( A  <_  A  <->  A  <_  B ) )
32biimpac 282 . 2  |-  ( ( A  <_  A  /\  A  =  B )  ->  A  <_  B )
41, 3sylan 267 1  |-  ( ( A  e.  RR  /\  A  =  B )  ->  A  <_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393   class class class wbr 3764   RRcr 6888    <_ cle 7061
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-cnv 4353  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066
This theorem is referenced by:  eqlei  7111  eqlei2  7112  zletric  8289  zlelttric  8290  zltnle  8291  zleloe  8292  zdcle  8317  qletric  9099  qlelttric  9100  qltnle  9101  resqrexlemcvg  9617  resqrexlemglsq  9620  cjcn2  9836
  Copyright terms: Public domain W3C validator