ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemglsq Unicode version

Theorem resqrexlemglsq 9620
Description: Lemma for resqrex 9624. The sequence formed by squaring each term of  F converges to  ( L ^
2 ). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
resqrexlemsqa.g  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
Assertion
Ref Expression
resqrexlemglsq  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) )
Distinct variable groups:    y, A, z   
e, F, j, k, i, y, z    x, F, k    e, L, j, k, i, y, z    ph, e, i, j, k, y, z
Allowed substitution hints:    ph( x)    A( x, e, i, j, k)    G( x, y, z, e, i, j, k)    L( x)

Proof of Theorem resqrexlemglsq
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 simpr 103 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
2 resqrexlemex.seq . . . . . . . . . . 11  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) ,  RR+ )
3 resqrexlemex.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
4 resqrexlemex.agt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
52, 3, 4resqrexlemf 9605 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
65adantr 261 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  F : NN
--> RR+ )
7 1nn 7925 . . . . . . . . . 10  |-  1  e.  NN
87a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  NN )
96, 8ffvelrnd 5303 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR+ )
109rpred 8622 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR )
11 resqrexlemgt0.rr . . . . . . . 8  |-  ( ph  ->  L  e.  RR )
1211adantr 261 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  L  e.  RR )
1310, 12readdcld 7055 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 )  +  L )  e.  RR )
149rpgt0d 8625 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  0  <  ( F `  1 ) )
15 resqrexlemgt0.lim . . . . . . . . 9  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
162, 3, 4, 11, 15resqrexlemgt0 9618 . . . . . . . 8  |-  ( ph  ->  0  <_  L )
1716adantr 261 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  0  <_  L )
18 addgtge0 7445 . . . . . . 7  |-  ( ( ( ( F ` 
1 )  e.  RR  /\  L  e.  RR )  /\  ( 0  < 
( F `  1
)  /\  0  <_  L ) )  ->  0  <  ( ( F ` 
1 )  +  L
) )
1910, 12, 14, 17, 18syl22anc 1136 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  0  <  ( ( F `  1
)  +  L ) )
2013, 19elrpd 8620 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 )  +  L )  e.  RR+ )
211, 20rpdivcld 8640 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( e  /  ( ( F `
 1 )  +  L ) )  e.  RR+ )
22 fveq2 5178 . . . . . . . . . . . 12  |-  ( i  =  k  ->  ( F `  i )  =  ( F `  k ) )
2322breq1d 3774 . . . . . . . . . . 11  |-  ( i  =  k  ->  (
( F `  i
)  <  ( L  +  e )  <->  ( F `  k )  <  ( L  +  e )
) )
2422oveq1d 5527 . . . . . . . . . . . 12  |-  ( i  =  k  ->  (
( F `  i
)  +  e )  =  ( ( F `
 k )  +  e ) )
2524breq2d 3776 . . . . . . . . . . 11  |-  ( i  =  k  ->  ( L  <  ( ( F `
 i )  +  e )  <->  L  <  ( ( F `  k
)  +  e ) ) )
2623, 25anbi12d 442 . . . . . . . . . 10  |-  ( i  =  k  ->  (
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <-> 
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) ) )
2726cbvralv 2533 . . . . . . . . 9  |-  ( A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
2827rexbii 2331 . . . . . . . 8  |-  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
2928ralbii 2330 . . . . . . 7  |-  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
3015, 29sylib 127 . . . . . 6  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
31 oveq2 5520 . . . . . . . . . 10  |-  ( e  =  f  ->  ( L  +  e )  =  ( L  +  f ) )
3231breq2d 3776 . . . . . . . . 9  |-  ( e  =  f  ->  (
( F `  k
)  <  ( L  +  e )  <->  ( F `  k )  <  ( L  +  f )
) )
33 oveq2 5520 . . . . . . . . . 10  |-  ( e  =  f  ->  (
( F `  k
)  +  e )  =  ( ( F `
 k )  +  f ) )
3433breq2d 3776 . . . . . . . . 9  |-  ( e  =  f  ->  ( L  <  ( ( F `
 k )  +  e )  <->  L  <  ( ( F `  k
)  +  f ) ) )
3532, 34anbi12d 442 . . . . . . . 8  |-  ( e  =  f  ->  (
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) )  <-> 
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) ) )
3635rexralbidv 2350 . . . . . . 7  |-  ( e  =  f  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) ) )
3736cbvralv 2533 . . . . . 6  |-  ( A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) )  <->  A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) )
3830, 37sylib 127 . . . . 5  |-  ( ph  ->  A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) )
3938adantr 261 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) )
40 oveq2 5520 . . . . . . . 8  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  ( L  +  f )  =  ( L  +  ( e  /  (
( F `  1
)  +  L ) ) ) )
4140breq2d 3776 . . . . . . 7  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  (
( F `  k
)  <  ( L  +  f )  <->  ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) )
42 oveq2 5520 . . . . . . . 8  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  (
( F `  k
)  +  f )  =  ( ( F `
 k )  +  ( e  /  (
( F `  1
)  +  L ) ) ) )
4342breq2d 3776 . . . . . . 7  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  ( L  <  ( ( F `
 k )  +  f )  <->  L  <  ( ( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) )
4441, 43anbi12d 442 . . . . . 6  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  (
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) )  <-> 
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) ) )
4544rexralbidv 2350 . . . . 5  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) ) )
4645rspcv 2652 . . . 4  |-  ( ( e  /  ( ( F `  1 )  +  L ) )  e.  RR+  ->  ( A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  ( e  /  (
( F `  1
)  +  L ) ) )  /\  L  <  ( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) ) )
4721, 39, 46sylc 56 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) )
48 simpllr 486 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
j  e.  NN )
49 simplr 482 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
k  e.  ( ZZ>= `  j ) )
50 eluznn 8538 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
5148, 49, 50syl2anc 391 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
k  e.  NN )
526ad3antrrr 461 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  F : NN --> RR+ )
5352, 51ffvelrnd 5303 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  e.  RR+ )
54 2z 8273 . . . . . . . . . . 11  |-  2  e.  ZZ
5554a1i 9 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
2  e.  ZZ )
5653, 55rpexpcld 9404 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k ) ^ 2 )  e.  RR+ )
57 fveq2 5178 . . . . . . . . . . 11  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
5857oveq1d 5527 . . . . . . . . . 10  |-  ( x  =  k  ->  (
( F `  x
) ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
59 resqrexlemsqa.g . . . . . . . . . 10  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
6058, 59fvmptg 5248 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( F `  k ) ^ 2 )  e.  RR+ )  ->  ( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
6151, 56, 60syl2anc 391 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
6253rpred 8622 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  e.  RR )
6362recnd 7054 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  e.  CC )
6412ad3antrrr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  L  e.  RR )
6564recnd 7054 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  L  e.  CC )
66 subsq 9358 . . . . . . . . . . 11  |-  ( ( ( F `  k
)  e.  CC  /\  L  e.  CC )  ->  ( ( ( F `
 k ) ^
2 )  -  ( L ^ 2 ) )  =  ( ( ( F `  k )  +  L )  x.  ( ( F `  k )  -  L
) ) )
6763, 65, 66syl2anc 391 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k ) ^
2 )  -  ( L ^ 2 ) )  =  ( ( ( F `  k )  +  L )  x.  ( ( F `  k )  -  L
) ) )
6862, 64readdcld 7055 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  +  L
)  e.  RR )
6962, 64resubcld 7379 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  -  L
)  e.  RR )
7068, 69remulcld 7056 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  +  L )  x.  (
( F `  k
)  -  L ) )  e.  RR )
7113ad3antrrr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F ` 
1 )  +  L
)  e.  RR )
7271, 69remulcld 7056 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 1 )  +  L )  x.  (
( F `  k
)  -  L ) )  e.  RR )
731ad3antrrr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
e  e.  RR+ )
7473rpred 8622 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
e  e.  RR )
753ad4antr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  A  e.  RR )
764ad4antr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
0  <_  A )
7715ad4antr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
782, 75, 76, 64, 77, 51resqrexlemoverl 9619 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  L  <_  ( F `  k ) )
7962, 64subge0d 7526 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( 0  <_  (
( F `  k
)  -  L )  <-> 
L  <_  ( F `  k ) ) )
8078, 79mpbird 156 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
0  <_  ( ( F `  k )  -  L ) )
81 fveq2 5178 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
8281oveq1d 5527 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
( F `  k
)  +  L )  =  ( ( F `
 1 )  +  L ) )
83 eqle 7109 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  k )  +  L
)  e.  RR  /\  ( ( F `  k )  +  L
)  =  ( ( F `  1 )  +  L ) )  ->  ( ( F `
 k )  +  L )  <_  (
( F `  1
)  +  L ) )
8468, 82, 83syl2an 273 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  k  =  1 )  ->  ( ( F `
 k )  +  L )  <_  (
( F `  1
)  +  L ) )
8562adantr 261 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  k
)  e.  RR )
8610ad4antr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  1
)  e.  RR )
8764adantr 261 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  ->  L  e.  RR )
883ad5antr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  ->  A  e.  RR )
894ad5antr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
0  <_  A )
907a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
1  e.  NN )
9151adantr 261 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
k  e.  NN )
92 simpr 103 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
1  <  k )
932, 88, 89, 90, 91, 92resqrexlemdecn 9610 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  k
)  <  ( F `  1 ) )
9485, 86, 93ltled 7135 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  k
)  <_  ( F `  1 ) )
9585, 86, 87, 94leadd1dd 7550 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( ( F `  k )  +  L
)  <_  ( ( F `  1 )  +  L ) )
96 nn1gt1 7947 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  =  1  \/  1  <  k ) )
9751, 96syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( k  =  1  \/  1  <  k
) )
9884, 95, 97mpjaodan 711 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  +  L
)  <_  ( ( F `  1 )  +  L ) )
9968, 71, 69, 80, 98lemul1ad 7905 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  +  L )  x.  (
( F `  k
)  -  L ) )  <_  ( (
( F `  1
)  +  L )  x.  ( ( F `
 k )  -  L ) ) )
100 simprl 483 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  <  ( L  +  ( e  / 
( ( F ` 
1 )  +  L
) ) ) )
10121ad3antrrr 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( e  /  (
( F `  1
)  +  L ) )  e.  RR+ )
102101rpred 8622 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( e  /  (
( F `  1
)  +  L ) )  e.  RR )
10362, 64, 102ltsubadd2d 7534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  -  L )  <  (
e  /  ( ( F `  1 )  +  L ) )  <-> 
( F `  k
)  <  ( L  +  ( e  / 
( ( F ` 
1 )  +  L
) ) ) ) )
104100, 103mpbird 156 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  -  L
)  <  ( e  /  ( ( F `
 1 )  +  L ) ) )
10520ad3antrrr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F ` 
1 )  +  L
)  e.  RR+ )
10669, 74, 105ltmuldiv2d 8671 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( ( F `  1 )  +  L )  x.  ( ( F `  k )  -  L
) )  <  e  <->  ( ( F `  k
)  -  L )  <  ( e  / 
( ( F ` 
1 )  +  L
) ) ) )
107104, 106mpbird 156 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 1 )  +  L )  x.  (
( F `  k
)  -  L ) )  <  e )
10870, 72, 74, 99, 107lelttrd 7139 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  +  L )  x.  (
( F `  k
)  -  L ) )  <  e )
10967, 108eqbrtrd 3784 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k ) ^
2 )  -  ( L ^ 2 ) )  <  e )
11062resqcld 9406 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k ) ^ 2 )  e.  RR )
11164resqcld 9406 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  e.  RR )
112110, 111, 74ltsubadd2d 7534 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( ( F `  k ) ^ 2 )  -  ( L ^ 2 ) )  <  e  <->  ( ( F `  k ) ^ 2 )  < 
( ( L ^
2 )  +  e ) ) )
113109, 112mpbid 135 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k ) ^ 2 )  <  ( ( L ^ 2 )  +  e ) )
11461, 113eqbrtrd 3784 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  <  ( ( L ^ 2 )  +  e ) )
11561, 110eqeltrd 2114 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  e.  RR )
116115, 74readdcld 7055 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( G `  k )  +  e )  e.  RR )
11717ad3antrrr 461 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
0  <_  L )
118 le2sq2 9329 . . . . . . . . . 10  |-  ( ( ( L  e.  RR  /\  0  <_  L )  /\  ( ( F `  k )  e.  RR  /\  L  <_  ( F `  k ) ) )  ->  ( L ^
2 )  <_  (
( F `  k
) ^ 2 ) )
11964, 117, 62, 78, 118syl22anc 1136 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  <_  ( ( F `  k ) ^ 2 ) )
120119, 61breqtrrd 3790 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  <_  ( G `  k ) )
121115, 73ltaddrpd 8656 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  <  ( ( G `  k )  +  e ) )
122111, 115, 116, 120, 121lelttrd 7139 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  <  ( ( G `  k )  +  e ) )
123114, 122jca 290 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( G `  k )  <  (
( L ^ 2 )  +  e )  /\  ( L ^
2 )  <  (
( G `  k
)  +  e ) ) )
124123ex 108 . . . . 5  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( ( F `  k )  <  ( L  +  ( e  /  (
( F `  1
)  +  L ) ) )  /\  L  <  ( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) )  ->  (
( G `  k
)  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) ) )
125124ralimdva 2387 . . . 4  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  <  ( L  +  ( e  / 
( ( F ` 
1 )  +  L
) ) )  /\  L  <  ( ( F `
 k )  +  ( e  /  (
( F `  1
)  +  L ) ) ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
)  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) ) )
126125reximdva 2421 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  (
( L ^ 2 )  +  e )  /\  ( L ^
2 )  <  (
( G `  k
)  +  e ) ) ) )
12747, 126mpd 13 . 2  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  (
( L ^ 2 )  +  e )  /\  ( L ^
2 )  <  (
( G `  k
)  +  e ) ) )
128127ralrimiva 2392 1  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    \/ wo 629    = wceq 1243    e. wcel 1393   A.wral 2306   E.wrex 2307   {csn 3375   class class class wbr 3764    |-> cmpt 3818    X. cxp 4343   -->wf 4898   ` cfv 4902  (class class class)co 5512    |-> cmpt2 5514   CCcc 6887   RRcr 6888   0cc0 6889   1c1 6890    + caddc 6892    x. cmul 6894    < clt 7060    <_ cle 7061    - cmin 7182    / cdiv 7651   NNcn 7914   2c2 7964   ZZcz 8245   ZZ>=cuz 8473   RR+crp 8583    seqcseq 9211   ^cexp 9254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973  df-3 7974  df-4 7975  df-n0 8182  df-z 8246  df-uz 8474  df-rp 8584  df-iseq 9212  df-iexp 9255
This theorem is referenced by:  resqrexlemsqa  9622
  Copyright terms: Public domain W3C validator