ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifbd Unicode version

Theorem eldifbd 2927
Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 2924. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
eldifbd.1 
\  C
Assertion
Ref Expression
eldifbd  C

Proof of Theorem eldifbd
StepHypRef Expression
1 eldifbd.1 . . 3 
\  C
2 eldif 2924 . . 3  \  C  C
31, 2sylib 127 . 2  C
43simprd 107 1  C
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97   wcel 1393    \ cdif 2911
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2556  df-dif 2917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator