ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elcnv2 Structured version   Unicode version

Theorem elcnv2 4456
Description: Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
elcnv2  `' R  <. ,  >. 
<. ,  >.  R
Distinct variable groups:   ,,   , R,

Proof of Theorem elcnv2
StepHypRef Expression
1 elcnv 4455 . 2  `' R  <. ,  >.  R
2 df-br 3756 . . . 4  R  <. ,  >.  R
32anbi2i 430 . . 3  <. ,  >.  R  <. , 
>.  <. ,  >.  R
432exbii 1494 . 2  <. , 
>.  R  <. ,  >.  <. ,  >.  R
51, 4bitri 173 1  `' R  <. ,  >. 
<. ,  >.  R
Colors of variables: wff set class
Syntax hints:   wa 97   wb 98   wceq 1242  wex 1378   wcel 1390   <.cop 3370   class class class wbr 3755   `'ccnv 4287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-br 3756  df-opab 3810  df-cnv 4296
This theorem is referenced by:  cnvuni  4464
  Copyright terms: Public domain W3C validator