Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmiun Unicode version

Theorem dmiun 4544
 Description: The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
Assertion
Ref Expression
dmiun

Proof of Theorem dmiun
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 2577 . . . 4
2 vex 2560 . . . . . 6
32eldm2 4533 . . . . 5
43rexbii 2331 . . . 4
5 eliun 3661 . . . . 5
65exbii 1496 . . . 4
71, 4, 63bitr4ri 202 . . 3
82eldm2 4533 . . 3
9 eliun 3661 . . 3
107, 8, 93bitr4i 201 . 2
1110eqriv 2037 1
 Colors of variables: wff set class Syntax hints:   wceq 1243  wex 1381   wcel 1393  wrex 2307  cop 3378  ciun 3657   cdm 4345 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-iun 3659  df-br 3765  df-dm 4355 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator