ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab2ga Unicode version

Theorem brab2ga 4415
Description: The law of concretion for a binary relation. See brab2a 4393 for alternate proof. TODO: should one of them be deleted? (Contributed by Mario Carneiro, 28-Apr-2015.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
brab2ga.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
brab2ga.2  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) }
Assertion
Ref Expression
brab2ga  |-  ( A R B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  ps ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y    ps, x, y
Allowed substitution hints:    ph( x, y)    R( x, y)

Proof of Theorem brab2ga
StepHypRef Expression
1 brab2ga.2 . . . 4  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  ph ) }
2 opabssxp 4414 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } 
C_  ( C  X.  D )
31, 2eqsstri 2975 . . 3  |-  R  C_  ( C  X.  D
)
43brel 4392 . 2  |-  ( A R B  ->  ( A  e.  C  /\  B  e.  D )
)
5 df-br 3765 . . . 4  |-  ( A R B  <->  <. A ,  B >.  e.  R )
61eleq2i 2104 . . . 4  |-  ( <. A ,  B >.  e.  R  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
75, 6bitri 173 . . 3  |-  ( A R B  <->  <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) } )
8 brab2ga.1 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
98opelopab2a 4002 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D
)  /\  ph ) }  <->  ps ) )
107, 9syl5bb 181 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B  <->  ps ) )
114, 10biadan2 429 1  |-  ( A R B  <->  ( ( A  e.  C  /\  B  e.  D )  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   <.cop 3378   class class class wbr 3764   {copab 3817    X. cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351
This theorem is referenced by:  reapval  7567  ltxr  8695
  Copyright terms: Public domain W3C validator