Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-peano4 | Unicode version |
Description: Remove from peano4 4320 dependency on ax-setind 4262. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-peano4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 901 | . . . . 5 | |
2 | pm3.22 252 | . . . . 5 | |
3 | bj-nnen2lp 10079 | . . . . 5 | |
4 | 1, 2, 3 | 3syl 17 | . . . 4 |
5 | sucidg 4153 | . . . . . . . . . . . 12 | |
6 | eleq2 2101 | . . . . . . . . . . . 12 | |
7 | 5, 6 | syl5ibrcom 146 | . . . . . . . . . . 11 |
8 | elsucg 4141 | . . . . . . . . . . 11 | |
9 | 7, 8 | sylibd 138 | . . . . . . . . . 10 |
10 | 9 | imp 115 | . . . . . . . . 9 |
11 | 10 | 3adant1 922 | . . . . . . . 8 |
12 | sucidg 4153 | . . . . . . . . . . . 12 | |
13 | eleq2 2101 | . . . . . . . . . . . 12 | |
14 | 12, 13 | syl5ibcom 144 | . . . . . . . . . . 11 |
15 | elsucg 4141 | . . . . . . . . . . 11 | |
16 | 14, 15 | sylibd 138 | . . . . . . . . . 10 |
17 | 16 | imp 115 | . . . . . . . . 9 |
18 | 17 | 3adant2 923 | . . . . . . . 8 |
19 | 11, 18 | jca 290 | . . . . . . 7 |
20 | eqcom 2042 | . . . . . . . . 9 | |
21 | 20 | orbi2i 679 | . . . . . . . 8 |
22 | 21 | anbi1i 431 | . . . . . . 7 |
23 | 19, 22 | sylib 127 | . . . . . 6 |
24 | ordir 730 | . . . . . 6 | |
25 | 23, 24 | sylibr 137 | . . . . 5 |
26 | 25 | ord 643 | . . . 4 |
27 | 4, 26 | mpd 13 | . . 3 |
28 | 27 | 3expia 1106 | . 2 |
29 | suceq 4139 | . 2 | |
30 | 28, 29 | impbid1 130 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 97 wb 98 wo 629 w3a 885 wceq 1243 wcel 1393 csuc 4102 com 4313 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-nul 3883 ax-pr 3944 ax-un 4170 ax-bd0 9933 ax-bdor 9936 ax-bdn 9937 ax-bdal 9938 ax-bdex 9939 ax-bdeq 9940 ax-bdel 9941 ax-bdsb 9942 ax-bdsep 10004 ax-infvn 10066 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-sn 3381 df-pr 3382 df-uni 3581 df-int 3616 df-suc 4108 df-iom 4314 df-bdc 9961 df-bj-ind 10051 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |