Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axun2 Unicode version

Theorem bj-axun2 10035
 Description: axun2 4172 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axun2
Distinct variable group:   ,,,

Proof of Theorem bj-axun2
StepHypRef Expression
1 ax-bdel 9941 . . . 4 BOUNDED
21ax-bdex 9939 . . 3 BOUNDED
3 df-rex 2312 . . . 4
4 exancom 1499 . . . 4
53, 4bitri 173 . . 3
62, 5bd0 9944 . 2 BOUNDED
7 ax-un 4170 . 2
86, 7bdbm1.3ii 10011 1
 Colors of variables: wff set class Syntax hints:   wa 97   wb 98  wal 1241  wex 1381  wrex 2307 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-un 4170  ax-bd0 9933  ax-bdex 9939  ax-bdel 9941  ax-bdsep 10004 This theorem depends on definitions:  df-bi 110  df-rex 2312 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator