Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axun2 Structured version   Unicode version

Theorem bj-axun2 7330
 Description: axun2 4118 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-axun2
Distinct variable group:   ,,,

Proof of Theorem bj-axun2
StepHypRef Expression
1 ax-bdel 7240 . . . 4 BOUNDED
21ax-bdex 7238 . . 3 BOUNDED
3 df-rex 2286 . . . 4
4 exancom 1477 . . . 4
53, 4bitri 173 . . 3
62, 5bd0 7243 . 2 BOUNDED
7 ax-un 4116 . 2
86, 7bdbm1.3ii 7309 1
 Colors of variables: wff set class Syntax hints:   wa 97   wb 98  wal 1224  wex 1358  wrex 2281 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-4 1377  ax-14 1382  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-ext 2000  ax-un 4116  ax-bd0 7232  ax-bdex 7238  ax-bdel 7240  ax-bdsep 7303 This theorem depends on definitions:  df-bi 110  df-nf 1326  df-cleq 2011  df-clel 2014  df-rex 2286 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator