![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bd0 | Unicode version |
Description: A formula equivalent to a bounded one is bounded. See also bd0r 9945. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bd0.min |
![]() ![]() |
bd0.maj |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bd0 |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bd0.min |
. 2
![]() ![]() | |
2 | bd0.maj |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | ax-bd0 9933 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | ax-mp 7 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 7 ax-bd0 9933 |
This theorem is referenced by: bd0r 9945 bdth 9951 bdnth 9954 bdnthALT 9955 bdph 9970 bdsbc 9978 bdsnss 9993 bdcint 9997 bdeqsuc 10001 bdcriota 10003 bj-axun2 10035 |
Copyright terms: Public domain | W3C validator |