Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bds | Unicode version |
Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 9942; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 9942. (Contributed by BJ, 19-Nov-2019.) |
Ref | Expression |
---|---|
bds.bd | BOUNDED |
bds.1 |
Ref | Expression |
---|---|
bds | BOUNDED |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bds.bd | . . . 4 BOUNDED | |
2 | 1 | bdcab 9969 | . . 3 BOUNDED |
3 | bds.1 | . . . 4 | |
4 | 3 | cbvabv 2161 | . . 3 |
5 | 2, 4 | bdceqi 9963 | . 2 BOUNDED |
6 | 5 | bdph 9970 | 1 BOUNDED |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 cab 2026 BOUNDED wbd 9932 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-bd0 9933 ax-bdsb 9942 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-bdc 9961 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |