Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bds Structured version   GIF version

Theorem bds 9240
Description: Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 9211; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 9211. (Contributed by BJ, 19-Nov-2019.)
Hypotheses
Ref Expression
bds.bd BOUNDED φ
bds.1 (x = y → (φψ))
Assertion
Ref Expression
bds BOUNDED ψ
Distinct variable groups:   ψ,x   φ,y
Allowed substitution hints:   φ(x)   ψ(y)

Proof of Theorem bds
StepHypRef Expression
1 bds.bd . . . 4 BOUNDED φ
21bdcab 9238 . . 3 BOUNDED {xφ}
3 bds.1 . . . 4 (x = y → (φψ))
43cbvabv 2158 . . 3 {xφ} = {yψ}
52, 4bdceqi 9232 . 2 BOUNDED {yψ}
65bdph 9239 1 BOUNDED ψ
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  {cab 2023  BOUNDED wbd 9201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-bd0 9202  ax-bdsb 9211
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-bdc 9230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator