![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcab | Unicode version |
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
bdcab.1 |
![]() ![]() |
Ref | Expression |
---|---|
bdcab |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcab.1 |
. . 3
![]() ![]() | |
2 | 1 | bdab 9293 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | bdelir 9302 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-gen 1335 ax-bd0 9268 ax-bdsb 9277 |
This theorem depends on definitions: df-bi 110 df-clab 2024 df-bdc 9296 |
This theorem is referenced by: bds 9306 bdcrab 9307 bdccsb 9315 bdcdif 9316 bdcun 9317 bdcin 9318 bdcpw 9324 bdcsn 9325 bdcuni 9331 bdcint 9332 bdciun 9333 bdciin 9334 bdcriota 9338 bj-bdfindis 9407 |
Copyright terms: Public domain | W3C validator |