Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcab Unicode version

Theorem bdcab 9304
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
Hypothesis
Ref Expression
bdcab.1 BOUNDED
Assertion
Ref Expression
bdcab BOUNDED  {  |  }

Proof of Theorem bdcab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 bdcab.1 . . 3 BOUNDED
21bdab 9293 . 2 BOUNDED  {  |  }
32bdelir 9302 1 BOUNDED  {  |  }
Colors of variables: wff set class
Syntax hints:   {cab 2023  BOUNDED wbd 9267  BOUNDED wbdc 9295
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-gen 1335  ax-bd0 9268  ax-bdsb 9277
This theorem depends on definitions:  df-bi 110  df-clab 2024  df-bdc 9296
This theorem is referenced by:  bds  9306  bdcrab  9307  bdccsb  9315  bdcdif  9316  bdcun  9317  bdcin  9318  bdcpw  9324  bdcsn  9325  bdcuni  9331  bdcint  9332  bdciun  9333  bdciin  9334  bdcriota  9338  bj-bdfindis  9407
  Copyright terms: Public domain W3C validator