![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcab | Unicode version |
Description: A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.) |
Ref | Expression |
---|---|
bdcab.1 |
![]() ![]() |
Ref | Expression |
---|---|
bdcab |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcab.1 |
. . 3
![]() ![]() | |
2 | 1 | bdab 9958 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | bdelir 9967 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-gen 1338 ax-bd0 9933 ax-bdsb 9942 |
This theorem depends on definitions: df-bi 110 df-clab 2027 df-bdc 9961 |
This theorem is referenced by: bds 9971 bdcrab 9972 bdccsb 9980 bdcdif 9981 bdcun 9982 bdcin 9983 bdcpw 9989 bdcsn 9990 bdcuni 9996 bdcint 9997 bdciun 9998 bdciin 9999 bdcriota 10003 bj-bdfindis 10072 |
Copyright terms: Public domain | W3C validator |