Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcint Unicode version

Theorem bdcint 9997
 Description: The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcint BOUNDED

Proof of Theorem bdcint
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdel 9941 . . . . 5 BOUNDED
21ax-bdal 9938 . . . 4 BOUNDED
3 df-ral 2311 . . . 4
42, 3bd0 9944 . . 3 BOUNDED
54bdcab 9969 . 2 BOUNDED
6 df-int 3616 . 2
75, 6bdceqir 9964 1 BOUNDED
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1241  cab 2026  wral 2306  cint 3615  BOUNDED wbdc 9960 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022  ax-bd0 9933  ax-bdal 9938  ax-bdel 9941  ax-bdsb 9942 This theorem depends on definitions:  df-bi 110  df-clab 2027  df-cleq 2033  df-clel 2036  df-ral 2311  df-int 3616  df-bdc 9961 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator